Summary an hgwrm
object.
Usage
# S3 method for class 'hgwrm'
summary(object, ..., test_hetero = FALSE, verbose = 0)
Arguments
- object
An
hgwrm
object returned fromhgwr()
.- ...
Other arguments passed from other functions.
- test_hetero
Logical/list value. Whether to test the spatial heterogeneity of GLSW effects. If it is set to
FALSE
, the test will not be executed. If it is set toTRUE
, the test will be executed with default parameters (see details below). It accepts a list to enable the test with specified parameters.- verbose
An Integer value to control whether additional messages during testing spatial heterogeneity should be reported.
Value
A list containing summary informations of this hgwrm
object
with the following fields.
diagnostic
A list of diagnostic information.
random.stddev
The standard deviation of random effects.
random.corr
The correlation matrix of random effects.
residuals
The residual vector.
Details
The parameters used to perform test of spatial heterogeneity are
bw
Bandwidth (unit: number of nearest neighbours) used to make spatial kernel density estimation. Default:
10
.poly
The number of polynomial terms used in the local polynomial estimation. Default:
2
.resample
Total resampling times. Default:
5000
.kernel
The kernel function used in the local polynomial estimation. Options are
"gaussian"
and"bisquared"
. Default:"bisquared"
.
Examples
data(mulsam.test)
m <- hgwr(
formula = y ~ L(g1 + g2) + x1 + (z1 | group),
data = mulsam.test$data,
coords = mulsam.test$coords,
bw = 10
)
summary(m)
#> Hierarchical and geographically weighted regression model
#> =========================================================
#> Formula: y ~ L(g1 + g2) + x1 + (z1 | group)
#> Method: Back-fitting and Maximum likelihood
#> Data: mulsam.test$data
#>
#> Parameter Estimates
#> -------------------
#> Fixed effects:
#> Estimated Sd. Err t.val Pr(>|t|)
#> Intercept 1.852190 0.203079 9.120541 0.000000 ***
#> x1 1.967644 0.033827 58.168539 0.000000 ***
#>
#> Bandwidth: 10 (nearest neighbours)
#>
#> GLSW effects:
#> Mean Est. Mean Sd. *** ** * .
#> Intercept -0.208441 0.247059 0.0% 0.0% 4.0% 24.0%
#> g1 1.631474 1.795246 0.0% 0.0% 0.0% 0.0%
#> g2 1.430116 1.476570 0.0% 0.0% 0.0% 0.0%
#>
#> SLR effects:
#> Groups Name Mean Std.Dev. Corr
#> group Intercept 0.000000 1.033171
#> z1 1.869539 1.033171 0.000000
#> Residual 0.079964 1.033171
#>
#>
#> Diagnostics
#> -----------
#> rsquared 0.905207
#> logLik NaN
#> AIC NaN
#>
#> Scaled Residuals
#> ----------------
#> Min 1Q Median 3Q Max
#> -3.416380 -0.584726 0.092501 0.725766 3.028003
#>
#> Other Information
#> -----------------
#> Number of Obs: 873
#> Groups: group , 25
summary(m, test_hetero = TRUE)
#> Hierarchical and geographically weighted regression model
#> =========================================================
#> Formula: y ~ L(g1 + g2) + x1 + (z1 | group)
#> Method: Back-fitting and Maximum likelihood
#> Data: mulsam.test$data
#>
#> Parameter Estimates
#> -------------------
#> Fixed effects:
#> Estimated Sd. Err t.val Pr(>|t|)
#> Intercept 1.852190 0.203079 9.120541 0.000000 ***
#> x1 1.967644 0.033827 58.168539 0.000000 ***
#>
#> Bandwidth: 10 (nearest neighbours)
#>
#> GLSW effects:
#> Mean Est. Mean Sd. *** ** * .
#> Intercept -0.208441 0.247059 0.0% 0.0% 4.0% 24.0%
#> g1 1.631474 1.795246 0.0% 0.0% 0.0% 0.0%
#> g2 1.430116 1.476570 0.0% 0.0% 0.0% 0.0%
#>
#> SLR effects:
#> Groups Name Mean Std.Dev. Corr
#> group Intercept 0.000000 1.033171
#> z1 1.869539 1.033171 0.000000
#> Residual 0.079964 1.033171
#>
#>
#> Diagnostics
#> -----------
#> rsquared 0.905207
#> logLik NaN
#> AIC NaN
#>
#> Scaled Residuals
#> ----------------
#> Min 1Q Median 3Q Max
#> -3.416380 -0.584726 0.092501 0.725766 3.028003
#>
#> Other Information
#> -----------------
#> Number of Obs: 873
#> Groups: group , 25
summary(m, test_hetero = list(kernel = "gaussian"))
#> Hierarchical and geographically weighted regression model
#> =========================================================
#> Formula: y ~ L(g1 + g2) + x1 + (z1 | group)
#> Method: Back-fitting and Maximum likelihood
#> Data: mulsam.test$data
#>
#> Parameter Estimates
#> -------------------
#> Fixed effects:
#> Estimated Sd. Err t.val Pr(>|t|)
#> Intercept 1.852190 0.203079 9.120541 0.000000 ***
#> x1 1.967644 0.033827 58.168539 0.000000 ***
#>
#> Bandwidth: 10 (nearest neighbours)
#>
#> GLSW effects:
#> Mean Est. Mean Sd. *** ** * .
#> Intercept -0.208441 0.247059 0.0% 0.0% 4.0% 24.0%
#> g1 1.631474 1.795246 0.0% 0.0% 0.0% 0.0%
#> g2 1.430116 1.476570 0.0% 0.0% 0.0% 0.0%
#>
#> SLR effects:
#> Groups Name Mean Std.Dev. Corr
#> group Intercept 0.000000 1.033171
#> z1 1.869539 1.033171 0.000000
#> Residual 0.079964 1.033171
#>
#>
#> Diagnostics
#> -----------
#> rsquared 0.905207
#> logLik NaN
#> AIC NaN
#>
#> Scaled Residuals
#> ----------------
#> Min 1Q Median 3Q Max
#> -3.416380 -0.584726 0.092501 0.725766 3.028003
#>
#> Other Information
#> -----------------
#> Number of Obs: 873
#> Groups: group , 25