Print description of a hgwrm
object.
Usage
# S3 method for class 'hgwrm'
print(x, decimal.fmt = "%.6f", ...)
Arguments
- x
An
hgwrm
object returned byhgwr()
.- decimal.fmt
The format string passing to
base::sprintf()
.- ...
Arguments passed on to
print_table_md
col_sep
Column separator. Default to
""
.header_sep
Header separator. Default to
"-"
. Ifheader_sep
only contains one character, it will be repeated for each column. If it contains more than one character, it will be printed below the first row.row_begin
Character at the beginning of each row. Default to
col_sep
.row_end
Character at the ending of each row. Default to
col_sep
.table_before
Characters to be printed before the table.
table_after
Characters to be printed after the table.
table_style
Name of pre-defined style. Possible values are
"plain"
,"md"
,"latex"
, or"booktabs"
. Default to"plain"
.
Examples
data(mulsam.test)
model <- hgwr(
formula = y ~ L(g1 + g2) + x1 + (z1 | group),
data = mulsam.test$data,
coords = mulsam.test$coords,
bw = 10
)
print(model)
#> Hierarchical and geographically weighted regression model
#> =========================================================
#> Formula: y ~ L(g1 + g2) + x1 + (z1 | group)
#> Method: Back-fitting and Maximum likelihood
#> Data: mulsam.test$data
#>
#> Fixed Effects
#> -------------
#> Intercept x1
#> 1.852190 1.967644
#>
#> Group-level Spatially Weighted Effects
#> --------------------------------------
#> Bandwidth: 10 (nearest neighbours)
#>
#> Coefficient estimates:
#> Coefficient Min 1st Quartile Median 3rd Quartile Max
#> Intercept -0.549094 -0.439522 -0.151433 -0.024133 0.178044
#> g1 0.909293 1.253143 1.692616 1.927313 2.310056
#> g2 1.083410 1.279953 1.415744 1.594576 1.693768
#>
#> Sample-level Random Effects
#> ---------------------------
#> Groups Name Std.Dev. Corr
#> group Intercept 1.033171
#> z1 1.033171 0.000000
#> Residual 1.033171
#>
#> Other Information
#> -----------------
#> Number of Obs: 873
#> Groups: group , 25
print(model, table.style = "md")
#> Hierarchical and geographically weighted regression model
#> =========================================================
#> Formula: y ~ L(g1 + g2) + x1 + (z1 | group)
#> Method: Back-fitting and Maximum likelihood
#> Data: mulsam.test$data
#>
#> Fixed Effects
#> -------------
#> Intercept x1
#> 1.852190 1.967644
#>
#> Group-level Spatially Weighted Effects
#> --------------------------------------
#> Bandwidth: 10 (nearest neighbours)
#>
#> Coefficient estimates:
#> Coefficient Min 1st Quartile Median 3rd Quartile Max
#> Intercept -0.549094 -0.439522 -0.151433 -0.024133 0.178044
#> g1 0.909293 1.253143 1.692616 1.927313 2.310056
#> g2 1.083410 1.279953 1.415744 1.594576 1.693768
#>
#> Sample-level Random Effects
#> ---------------------------
#> Groups Name Std.Dev. Corr
#> group Intercept 1.033171
#> z1 1.033171 0.000000
#> Residual 1.033171
#>
#> Other Information
#> -----------------
#> Number of Obs: 873
#> Groups: group , 25